pytableaux
2.3
  • Design
  • Logics
    • Bivalent
      • CPL - Classical Predicate Logic
      • CFOL - Classical First-Order Logic
    • Bivalent Modal
      • K - Kripke Normal Modal Logic
      • D - Deontic Normal Modal Logic
      • T - Reflexive Normal Modal Logic
      • S4 - S4 Normal Modal Logic
      • S5 - S5 Normal Modal Logic
    • Many-valued
      • FDE - First Degree Entailment
      • K3 - Strong Kleene Logic
      • LP - Logic of Paradox
      • L3 - Łukasiewicz 3-valued Logic
      • RM3 - R-mingle 3
      • K3W - Weak Kleene Logic
      • K3WQ - Weak Kleene Logic with alternate quantification
      • B3E - Bochvar 3-valued External Logic
      • G3 - Gödel 3-valued Logic
      • MH - Paracomplete Hybrid Logic
      • NH - Paraconsistent Hybrid Logic
      • GO - Gappy Object Logic
      • P3 - Post 3-valued Logic
    • Many-valued Modal
      • KFDE - FDE with K Modal
      • TFDE - FDE with T Modal
      • S4FDE - FDE with S4 Modal
      • S5FDE - FDE with S5 Modal
      • KK3 - K3 with K Modal
      • TK3 - K3 with T Modal
      • S4K3 - K3 with S4 Modal
      • S5K3 - K3 with S5 Modal
      • KLP - LP with K Modal
      • TLP - LP with T Modal
      • S4LP - LP with S4 Modal
      • S5LP - LP with S5 Modal
      • KL3 - L3 with K Modal
      • TL3 - L3 with T Modal
      • S4L3 - L3 with S4 Modal
      • S5L3 - L3 with S5 Modal
      • KRM3 - RM3 with K Modal
      • TRM3 - RM3 with T Modal
      • S4RM3 - RM3 with S4 Modal
      • S5RM3 - RM3 with S5 Modal
      • KK3W - K3W with K Modal
      • TK3W - K3W with T Modal
      • S4K3W - K3W with S4 Modal
      • S5K3W - K3W with S5 Modal
      • KB3E - B3E with K Modal
      • TB3E - B3E with T Modal
      • S4B3E - B3E with S4 Modal
      • S5B3E - B3E with S5 Modal
      • KG3 - G3 with K Modal
      • TG3 - G3 with T Modal
      • S4G3 - G3 with S4 Modal
      • S5G3 - G3 with S5 Modal
      • S4GO - GO with S4 Modal
  • Python API
  • Modules
  • Tables
  • Glossary
pytableaux
  • Logics
  • View page source

Logics

Bivalent

  • CPL - Classical Predicate Logic
  • CFOL - Classical First-Order Logic

Bivalent Modal

  • K - Kripke Normal Modal Logic
  • D - Deontic Normal Modal Logic
  • T - Reflexive Normal Modal Logic
  • S4 - S4 Normal Modal Logic
  • S5 - S5 Normal Modal Logic

Many-valued

  • FDE - First Degree Entailment
  • K3 - Strong Kleene Logic
  • LP - Logic of Paradox
  • L3 - Łukasiewicz 3-valued Logic
  • RM3 - R-mingle 3
  • K3W - Weak Kleene Logic
  • K3WQ - Weak Kleene Logic with alternate quantification
  • B3E - Bochvar 3-valued External Logic
  • G3 - Gödel 3-valued Logic
  • MH - Paracomplete Hybrid Logic
  • NH - Paraconsistent Hybrid Logic
  • GO - Gappy Object Logic
  • P3 - Post 3-valued Logic

Many-valued Modal

  • KFDE - FDE with K Modal
  • TFDE - FDE with T Modal
  • S4FDE - FDE with S4 Modal
  • S5FDE - FDE with S5 Modal
  • KK3 - K3 with K Modal
  • TK3 - K3 with T Modal
  • S4K3 - K3 with S4 Modal
  • S5K3 - K3 with S5 Modal
  • KLP - LP with K Modal
  • TLP - LP with T Modal
  • S4LP - LP with S4 Modal
  • S5LP - LP with S5 Modal
  • KL3 - L3 with K Modal
  • TL3 - L3 with T Modal
  • S4L3 - L3 with S4 Modal
  • S5L3 - L3 with S5 Modal
  • KRM3 - RM3 with K Modal
  • TRM3 - RM3 with T Modal
  • S4RM3 - RM3 with S4 Modal
  • S5RM3 - RM3 with S5 Modal
  • KK3W - K3W with K Modal
  • TK3W - K3W with T Modal
  • S4K3W - K3W with S4 Modal
  • S5K3W - K3W with S5 Modal
  • KB3E - B3E with K Modal
  • TB3E - B3E with T Modal
  • S4B3E - B3E with S4 Modal
  • S5B3E - B3E with S5 Modal
  • KG3 - G3 with K Modal
  • TG3 - G3 with T Modal
  • S4G3 - G3 with S4 Modal
  • S5G3 - G3 with S5 Modal
  • S4GO - GO with S4 Modal
Previous Next

© Copyright 2014-2023, Doug Owings. Released under the GNU Affero General Public License v3.0 or later.