Source code for pytableaux.logics.cfol

# -*- coding: utf-8 -*-
# pytableaux, a multi-logic proof generator.
# Copyright (C) 2014-2023 Doug Owings.
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
from __future__ import annotations

from . import LogicType
from . import fde as FDE
from . import k as K
from ..tools import group

class Meta(K.Meta):
    name = 'CFOL'
    title = 'Classical First Order Logic'
    modal = False
    description = 'Standard bivalent logic with full first-order quantification'
    category_order = 2
    native_operators = FDE.Meta.native_operators
    extension_of = (
        'B3E',
        'CPL',
        'G3',
        'GO',
        'K3',
        'K3W',
        'K3WQ',
        'LP',
        'L3',
        'MH',
        'NH',
        'RM3')

class Model(K.Model): pass

class System(K.System): pass

[docs] class Rules(LogicType.Rules): closure = K.Rules.closure groups = ( group( # non-branching rules K.Rules.IdentityIndiscernability, K.Rules.Assertion, K.Rules.AssertionNegated, K.Rules.Conjunction, K.Rules.DisjunctionNegated, K.Rules.MaterialConditionalNegated, K.Rules.ConditionalNegated, K.Rules.DoubleNegation, K.Rules.ExistentialNegated, K.Rules.UniversalNegated), group( # branching rules K.Rules.ConjunctionNegated, K.Rules.Disjunction, K.Rules.MaterialConditional, K.Rules.MaterialBiconditional, K.Rules.MaterialBiconditionalNegated, K.Rules.Conditional, K.Rules.Biconditional, K.Rules.BiconditionalNegated, K.Rules.Existential, K.Rules.Universal))