# -*- coding: utf-8 -*-
# pytableaux, a multi-logic proof generator.
# Copyright (C) 2014-2023 Doug Owings.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import annotations
from . import LogicType
from . import fde as FDE
from . import k as K
from ..tools import group
class Meta(K.Meta):
name = 'CFOL'
title = 'Classical First Order Logic'
modal = False
description = 'Standard bivalent logic with full first-order quantification'
category_order = 2
native_operators = FDE.Meta.native_operators
extension_of = (
'B3E',
'CPL',
'G3',
'GO',
'K3',
'K3W',
'K3WQ',
'LP',
'L3',
'MH',
'NH',
'RM3')
class Model(K.Model): pass
class System(K.System): pass
[docs]
class Rules(LogicType.Rules):
closure = K.Rules.closure
groups = (
group(
# non-branching rules
K.Rules.IdentityIndiscernability,
K.Rules.Assertion,
K.Rules.AssertionNegated,
K.Rules.Conjunction,
K.Rules.DisjunctionNegated,
K.Rules.MaterialConditionalNegated,
K.Rules.ConditionalNegated,
K.Rules.DoubleNegation,
K.Rules.ExistentialNegated,
K.Rules.UniversalNegated),
group(
# branching rules
K.Rules.ConjunctionNegated,
K.Rules.Disjunction,
K.Rules.MaterialConditional,
K.Rules.MaterialBiconditional,
K.Rules.MaterialBiconditionalNegated,
K.Rules.Conditional,
K.Rules.Biconditional,
K.Rules.BiconditionalNegated,
K.Rules.Existential,
K.Rules.Universal))